????
Current Path : /proc/329612/root/usr/lib64/python2.6/site-packages/matplotlib/ |
Current File : //proc/329612/root/usr/lib64/python2.6/site-packages/matplotlib/mathtext.py |
r""" :mod:`~matplotlib.mathtext` is a module for parsing a subset of the TeX math syntax and drawing them to a matplotlib backend. For a tutorial of its usage see :ref:`mathtext-tutorial`. This document is primarily concerned with implementation details. The module uses pyparsing_ to parse the TeX expression. .. _pyparsing: http://pyparsing.wikispaces.com/ The Bakoma distribution of the TeX Computer Modern fonts, and STIX fonts are supported. There is experimental support for using arbitrary fonts, but results may vary without proper tweaking and metrics for those fonts. If you find TeX expressions that don't parse or render properly, please email mdroe@stsci.edu, but please check KNOWN ISSUES below first. """ from __future__ import division import os from cStringIO import StringIO from math import ceil try: set except NameError: from sets import Set as set import unicodedata from warnings import warn from numpy import inf, isinf import numpy as np from matplotlib.pyparsing import Combine, Group, Optional, Forward, \ Literal, OneOrMore, ZeroOrMore, ParseException, Empty, \ ParseResults, Suppress, oneOf, StringEnd, ParseFatalException, \ FollowedBy, Regex, ParserElement # Enable packrat parsing ParserElement.enablePackrat() from matplotlib.afm import AFM from matplotlib.cbook import Bunch, get_realpath_and_stat, \ is_string_like, maxdict from matplotlib.ft2font import FT2Font, FT2Image, KERNING_DEFAULT, LOAD_FORCE_AUTOHINT, LOAD_NO_HINTING from matplotlib.font_manager import findfont, FontProperties from matplotlib._mathtext_data import latex_to_bakoma, \ latex_to_standard, tex2uni, latex_to_cmex, stix_virtual_fonts from matplotlib import get_data_path, rcParams import matplotlib.colors as mcolors import matplotlib._png as _png #################### ############################################################################## # FONTS def get_unicode_index(symbol): """get_unicode_index(symbol) -> integer Return the integer index (from the Unicode table) of symbol. *symbol* can be a single unicode character, a TeX command (i.e. r'\pi'), or a Type1 symbol name (i.e. 'phi'). """ # From UTF #25: U+2212 minus sign is the preferred # representation of the unary and binary minus sign rather than # the ASCII-derived U+002D hyphen-minus, because minus sign is # unambiguous and because it is rendered with a more desirable # length, usually longer than a hyphen. if symbol == '-': return 0x2212 try:# This will succeed if symbol is a single unicode char return ord(symbol) except TypeError: pass try:# Is symbol a TeX symbol (i.e. \alpha) return tex2uni[symbol.strip("\\")] except KeyError: message = """'%(symbol)s' is not a valid Unicode character or TeX/Type1 symbol"""%locals() raise ValueError, message class MathtextBackend(object): """ The base class for the mathtext backend-specific code. The purpose of :class:`MathtextBackend` subclasses is to interface between mathtext and a specific matplotlib graphics backend. Subclasses need to override the following: - :meth:`render_glyph` - :meth:`render_filled_rect` - :meth:`get_results` And optionally, if you need to use a Freetype hinting style: - :meth:`get_hinting_type` """ def __init__(self): self.fonts_object = None def set_canvas_size(self, w, h, d): 'Dimension the drawing canvas' self.width = w self.height = h self.depth = d def render_glyph(self, ox, oy, info): """ Draw a glyph described by *info* to the reference point (*ox*, *oy*). """ raise NotImplementedError() def render_filled_rect(self, x1, y1, x2, y2): """ Draw a filled black rectangle from (*x1*, *y1*) to (*x2*, *y2*). """ raise NotImplementedError() def get_results(self, box): """ Return a backend-specific tuple to return to the backend after all processing is done. """ raise NotImplementedError() def get_hinting_type(self): """ Get the Freetype hinting type to use with this particular backend. """ return LOAD_NO_HINTING class MathtextBackendBbox(MathtextBackend): """ A backend whose only purpose is to get a precise bounding box. Only required for the Agg backend. """ def __init__(self, real_backend): MathtextBackend.__init__(self) self.bbox = [0, 0, 0, 0] self.real_backend = real_backend def _update_bbox(self, x1, y1, x2, y2): self.bbox = [min(self.bbox[0], x1), min(self.bbox[1], y1), max(self.bbox[2], x2), max(self.bbox[3], y2)] def render_glyph(self, ox, oy, info): self._update_bbox(ox + info.metrics.xmin, oy - info.metrics.ymax, ox + info.metrics.xmax, oy - info.metrics.ymin) def render_rect_filled(self, x1, y1, x2, y2): self._update_bbox(x1, y1, x2, y2) def get_results(self, box): orig_height = box.height orig_depth = box.depth ship(0, 0, box) bbox = self.bbox bbox = [bbox[0] - 1, bbox[1] - 1, bbox[2] + 1, bbox[3] + 1] self._switch_to_real_backend() self.fonts_object.set_canvas_size( bbox[2] - bbox[0], (bbox[3] - bbox[1]) - orig_depth, (bbox[3] - bbox[1]) - orig_height) ship(-bbox[0], -bbox[1], box) return self.fonts_object.get_results(box) def get_hinting_type(self): return self.real_backend.get_hinting_type() def _switch_to_real_backend(self): self.fonts_object.mathtext_backend = self.real_backend self.real_backend.fonts_object = self.fonts_object self.real_backend.ox = self.bbox[0] self.real_backend.oy = self.bbox[1] class MathtextBackendAggRender(MathtextBackend): """ Render glyphs and rectangles to an FTImage buffer, which is later transferred to the Agg image by the Agg backend. """ def __init__(self): self.ox = 0 self.oy = 0 self.image = None MathtextBackend.__init__(self) def set_canvas_size(self, w, h, d): MathtextBackend.set_canvas_size(self, w, h, d) self.image = FT2Image(ceil(w), ceil(h + d)) def render_glyph(self, ox, oy, info): info.font.draw_glyph_to_bitmap( self.image, ox, oy - info.metrics.iceberg, info.glyph) def render_rect_filled(self, x1, y1, x2, y2): height = max(int(y2 - y1) - 1, 0) if height == 0: center = (y2 + y1) / 2.0 y = int(center - (height + 1) / 2.0) else: y = int(y1) self.image.draw_rect_filled(int(x1), y, ceil(x2), y + height) def get_results(self, box): return (self.ox, self.oy, self.width, self.height + self.depth, self.depth, self.image, self.fonts_object.get_used_characters()) def get_hinting_type(self): return LOAD_FORCE_AUTOHINT def MathtextBackendAgg(): return MathtextBackendBbox(MathtextBackendAggRender()) class MathtextBackendBitmapRender(MathtextBackendAggRender): def get_results(self, box): return self.image, self.depth def MathtextBackendBitmap(): """ A backend to generate standalone mathtext images. No additional matplotlib backend is required. """ return MathtextBackendBbox(MathtextBackendBitmapRender()) class MathtextBackendPs(MathtextBackend): """ Store information to write a mathtext rendering to the PostScript backend. """ def __init__(self): self.pswriter = StringIO() self.lastfont = None def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset postscript_name = info.postscript_name fontsize = info.fontsize symbol_name = info.symbol_name if (postscript_name, fontsize) != self.lastfont: ps = """/%(postscript_name)s findfont %(fontsize)s scalefont setfont """ % locals() self.lastfont = postscript_name, fontsize self.pswriter.write(ps) ps = """%(ox)f %(oy)f moveto /%(symbol_name)s glyphshow\n """ % locals() self.pswriter.write(ps) def render_rect_filled(self, x1, y1, x2, y2): ps = "%f %f %f %f rectfill\n" % (x1, self.height - y2, x2 - x1, y2 - y1) self.pswriter.write(ps) def get_results(self, box): ship(0, -self.depth, box) #print self.depth return (self.width, self.height + self.depth, self.depth, self.pswriter, self.fonts_object.get_used_characters()) class MathtextBackendPdf(MathtextBackend): """ Store information to write a mathtext rendering to the PDF backend. """ def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): filename = info.font.fname oy = self.height - oy + info.offset self.glyphs.append( (ox, oy, filename, info.fontsize, info.num, info.symbol_name)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append((x1, self.height - y2, x2 - x1, y2 - y1)) def get_results(self, box): ship(0, -self.depth, box) return (self.width, self.height + self.depth, self.depth, self.glyphs, self.rects, self.fonts_object.get_used_characters()) class MathtextBackendSvg(MathtextBackend): """ Store information to write a mathtext rendering to the SVG backend. """ def __init__(self): self.svg_glyphs = [] self.svg_rects = [] def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset thetext = unichr(info.num) self.svg_glyphs.append( (info.font, info.fontsize, thetext, ox, oy, info.metrics)) def render_rect_filled(self, x1, y1, x2, y2): self.svg_rects.append( (x1, self.height - y1 + 1, x2 - x1, y2 - y1)) def get_results(self, box): ship(0, -self.depth, box) svg_elements = Bunch(svg_glyphs = self.svg_glyphs, svg_rects = self.svg_rects) return (self.width, self.height + self.depth, self.depth, svg_elements, self.fonts_object.get_used_characters()) class MathtextBackendCairo(MathtextBackend): """ Store information to write a mathtext rendering to the Cairo backend. """ def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): oy = oy - info.offset - self.height thetext = unichr(info.num) self.glyphs.append( (info.font, info.fontsize, thetext, ox, oy)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append( (x1, y1 - self.height, x2 - x1, y2 - y1)) def get_results(self, box): ship(0, -self.depth, box) return (self.width, self.height + self.depth, self.depth, self.glyphs, self.rects) class Fonts(object): """ An abstract base class for a system of fonts to use for mathtext. The class must be able to take symbol keys and font file names and return the character metrics. It also delegates to a backend class to do the actual drawing. """ def __init__(self, default_font_prop, mathtext_backend): """ *default_font_prop*: A :class:`~matplotlib.font_manager.FontProperties` object to use for the default non-math font, or the base font for Unicode (generic) font rendering. *mathtext_backend*: A subclass of :class:`MathTextBackend` used to delegate the actual rendering. """ self.default_font_prop = default_font_prop self.mathtext_backend = mathtext_backend # Make these classes doubly-linked self.mathtext_backend.fonts_object = self self.used_characters = {} def destroy(self): """ Fix any cyclical references before the object is about to be destroyed. """ self.used_characters = None def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): """ Get the kerning distance for font between *sym1* and *sym2*. *fontX*: one of the TeX font names:: tt, it, rm, cal, sf, bf or default/regular (non-math) *fontclassX*: TODO *symX*: a symbol in raw TeX form. e.g. '1', 'x' or '\sigma' *fontsizeX*: the fontsize in points *dpi*: the current dots-per-inch """ return 0. def get_metrics(self, font, font_class, sym, fontsize, dpi): """ *font*: one of the TeX font names:: tt, it, rm, cal, sf, bf or default/regular (non-math) *font_class*: TODO *sym*: a symbol in raw TeX form. e.g. '1', 'x' or '\sigma' *fontsize*: font size in points *dpi*: current dots-per-inch Returns an object with the following attributes: - *advance*: The advance distance (in points) of the glyph. - *height*: The height of the glyph in points. - *width*: The width of the glyph in points. - *xmin*, *xmax*, *ymin*, *ymax* - the ink rectangle of the glyph - *iceberg* - the distance from the baseline to the top of the glyph. This corresponds to TeX's definition of "height". """ info = self._get_info(font, font_class, sym, fontsize, dpi) return info.metrics def set_canvas_size(self, w, h, d): """ Set the size of the buffer used to render the math expression. Only really necessary for the bitmap backends. """ self.width, self.height, self.depth = ceil(w), ceil(h), ceil(d) self.mathtext_backend.set_canvas_size(self.width, self.height, self.depth) def render_glyph(self, ox, oy, facename, font_class, sym, fontsize, dpi): """ Draw a glyph at - *ox*, *oy*: position - *facename*: One of the TeX face names - *font_class*: - *sym*: TeX symbol name or single character - *fontsize*: fontsize in points - *dpi*: The dpi to draw at. """ info = self._get_info(facename, font_class, sym, fontsize, dpi) realpath, stat_key = get_realpath_and_stat(info.font.fname) used_characters = self.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].add(info.num) self.mathtext_backend.render_glyph(ox, oy, info) def render_rect_filled(self, x1, y1, x2, y2): """ Draw a filled rectangle from (*x1*, *y1*) to (*x2*, *y2*). """ self.mathtext_backend.render_rect_filled(x1, y1, x2, y2) def get_xheight(self, font, fontsize, dpi): """ Get the xheight for the given *font* and *fontsize*. """ raise NotImplementedError() def get_underline_thickness(self, font, fontsize, dpi): """ Get the line thickness that matches the given font. Used as a base unit for drawing lines such as in a fraction or radical. """ raise NotImplementedError() def get_used_characters(self): """ Get the set of characters that were used in the math expression. Used by backends that need to subset fonts so they know which glyphs to include. """ return self.used_characters def get_results(self, box): """ Get the data needed by the backend to render the math expression. The return value is backend-specific. """ return self.mathtext_backend.get_results(box) def get_sized_alternatives_for_symbol(self, fontname, sym): """ Override if your font provides multiple sizes of the same symbol. Should return a list of symbols matching *sym* in various sizes. The expression renderer will select the most appropriate size for a given situation from this list. """ return [(fontname, sym)] class TruetypeFonts(Fonts): """ A generic base class for all font setups that use Truetype fonts (through FT2Font). """ class CachedFont: def __init__(self, font): self.font = font self.charmap = font.get_charmap() self.glyphmap = dict( [(glyphind, ccode) for ccode, glyphind in self.charmap.iteritems()]) def __repr__(self): return repr(self.font) def __init__(self, default_font_prop, mathtext_backend): Fonts.__init__(self, default_font_prop, mathtext_backend) self.glyphd = {} self._fonts = {} filename = findfont(default_font_prop) default_font = self.CachedFont(FT2Font(str(filename))) self._fonts['default'] = default_font self._fonts['regular'] = default_font def destroy(self): self.glyphd = None Fonts.destroy(self) def _get_font(self, font): if font in self.fontmap: basename = self.fontmap[font] else: basename = font cached_font = self._fonts.get(basename) if cached_font is None: font = FT2Font(basename) cached_font = self.CachedFont(font) self._fonts[basename] = cached_font self._fonts[font.postscript_name] = cached_font self._fonts[font.postscript_name.lower()] = cached_font return cached_font def _get_offset(self, cached_font, glyph, fontsize, dpi): if cached_font.font.postscript_name == 'Cmex10': return glyph.height/64.0/2.0 + 256.0/64.0 * dpi/72.0 return 0. def _get_info(self, fontname, font_class, sym, fontsize, dpi): key = fontname, font_class, sym, fontsize, dpi bunch = self.glyphd.get(key) if bunch is not None: return bunch cached_font, num, symbol_name, fontsize, slanted = \ self._get_glyph(fontname, font_class, sym, fontsize) font = cached_font.font font.set_size(fontsize, dpi) glyph = font.load_char( num, flags=self.mathtext_backend.get_hinting_type()) xmin, ymin, xmax, ymax = [val/64.0 for val in glyph.bbox] offset = self._get_offset(cached_font, glyph, fontsize, dpi) metrics = Bunch( advance = glyph.linearHoriAdvance/65536.0, height = glyph.height/64.0, width = glyph.width/64.0, xmin = xmin, xmax = xmax, ymin = ymin+offset, ymax = ymax+offset, # iceberg is the equivalent of TeX's "height" iceberg = glyph.horiBearingY/64.0 + offset, slanted = slanted ) result = self.glyphd[key] = Bunch( font = font, fontsize = fontsize, postscript_name = font.postscript_name, metrics = metrics, symbol_name = symbol_name, num = num, glyph = glyph, offset = offset ) return result def get_xheight(self, font, fontsize, dpi): cached_font = self._get_font(font) cached_font.font.set_size(fontsize, dpi) pclt = cached_font.font.get_sfnt_table('pclt') if pclt is None: # Some fonts don't store the xHeight, so we do a poor man's xHeight metrics = self.get_metrics(font, rcParams['mathtext.default'], 'x', fontsize, dpi) return metrics.iceberg xHeight = (pclt['xHeight'] / 64.0) * (fontsize / 12.0) * (dpi / 100.0) return xHeight def get_underline_thickness(self, font, fontsize, dpi): # This function used to grab underline thickness from the font # metrics, but that information is just too un-reliable, so it # is now hardcoded. return ((0.75 / 12.0) * fontsize * dpi) / 72.0 def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): if font1 == font2 and fontsize1 == fontsize2: info1 = self._get_info(font1, fontclass1, sym1, fontsize1, dpi) info2 = self._get_info(font2, fontclass2, sym2, fontsize2, dpi) font = info1.font return font.get_kerning(info1.num, info2.num, KERNING_DEFAULT) / 64.0 return Fonts.get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi) class BakomaFonts(TruetypeFonts): """ Use the Bakoma TrueType fonts for rendering. Symbols are strewn about a number of font files, each of which has its own proprietary 8-bit encoding. """ _fontmap = { 'cal' : 'cmsy10', 'rm' : 'cmr10', 'tt' : 'cmtt10', 'it' : 'cmmi10', 'bf' : 'cmb10', 'sf' : 'cmss10', 'ex' : 'cmex10' } def __init__(self, *args, **kwargs): self._stix_fallback = StixFonts(*args, **kwargs) TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} for key, val in self._fontmap.iteritems(): fullpath = findfont(val) self.fontmap[key] = fullpath self.fontmap[val] = fullpath _slanted_symbols = set(r"\int \oint".split()) def _get_glyph(self, fontname, font_class, sym, fontsize): symbol_name = None if fontname in self.fontmap and sym in latex_to_bakoma: basename, num = latex_to_bakoma[sym] slanted = (basename == "cmmi10") or sym in self._slanted_symbols try: cached_font = self._get_font(basename) except RuntimeError: pass else: symbol_name = cached_font.font.get_glyph_name(num) num = cached_font.glyphmap[num] elif len(sym) == 1: slanted = (fontname == "it") try: cached_font = self._get_font(fontname) except RuntimeError: pass else: num = ord(sym) gid = cached_font.charmap.get(num) if gid is not None: symbol_name = cached_font.font.get_glyph_name( cached_font.charmap[num]) if symbol_name is None: return self._stix_fallback._get_glyph( fontname, font_class, sym, fontsize) return cached_font, num, symbol_name, fontsize, slanted # The Bakoma fonts contain many pre-sized alternatives for the # delimiters. The AutoSizedChar class will use these alternatives # and select the best (closest sized) glyph. _size_alternatives = { '(' : [('rm', '('), ('ex', '\xa1'), ('ex', '\xb3'), ('ex', '\xb5'), ('ex', '\xc3')], ')' : [('rm', ')'), ('ex', '\xa2'), ('ex', '\xb4'), ('ex', '\xb6'), ('ex', '\x21')], '{' : [('cal', '{'), ('ex', '\xa9'), ('ex', '\x6e'), ('ex', '\xbd'), ('ex', '\x28')], '}' : [('cal', '}'), ('ex', '\xaa'), ('ex', '\x6f'), ('ex', '\xbe'), ('ex', '\x29')], # The fourth size of '[' is mysteriously missing from the BaKoMa # font, so I've ommitted it for both '[' and ']' '[' : [('rm', '['), ('ex', '\xa3'), ('ex', '\x68'), ('ex', '\x22')], ']' : [('rm', ']'), ('ex', '\xa4'), ('ex', '\x69'), ('ex', '\x23')], r'\lfloor' : [('ex', '\xa5'), ('ex', '\x6a'), ('ex', '\xb9'), ('ex', '\x24')], r'\rfloor' : [('ex', '\xa6'), ('ex', '\x6b'), ('ex', '\xba'), ('ex', '\x25')], r'\lceil' : [('ex', '\xa7'), ('ex', '\x6c'), ('ex', '\xbb'), ('ex', '\x26')], r'\rceil' : [('ex', '\xa8'), ('ex', '\x6d'), ('ex', '\xbc'), ('ex', '\x27')], r'\langle' : [('ex', '\xad'), ('ex', '\x44'), ('ex', '\xbf'), ('ex', '\x2a')], r'\rangle' : [('ex', '\xae'), ('ex', '\x45'), ('ex', '\xc0'), ('ex', '\x2b')], r'\__sqrt__' : [('ex', '\x70'), ('ex', '\x71'), ('ex', '\x72'), ('ex', '\x73')], r'\backslash': [('ex', '\xb2'), ('ex', '\x2f'), ('ex', '\xc2'), ('ex', '\x2d')], r'/' : [('rm', '/'), ('ex', '\xb1'), ('ex', '\x2e'), ('ex', '\xcb'), ('ex', '\x2c')], r'\widehat' : [('rm', '\x5e'), ('ex', '\x62'), ('ex', '\x63'), ('ex', '\x64')], r'\widetilde': [('rm', '\x7e'), ('ex', '\x65'), ('ex', '\x66'), ('ex', '\x67')], r'<' : [('cal', 'h'), ('ex', 'D')], r'>' : [('cal', 'i'), ('ex', 'E')] } for alias, target in [('\leftparen', '('), ('\rightparent', ')'), ('\leftbrace', '{'), ('\rightbrace', '}'), ('\leftbracket', '['), ('\rightbracket', ']')]: _size_alternatives[alias] = _size_alternatives[target] def get_sized_alternatives_for_symbol(self, fontname, sym): return self._size_alternatives.get(sym, [(fontname, sym)]) class UnicodeFonts(TruetypeFonts): """ An abstract base class for handling Unicode fonts. While some reasonably complete Unicode fonts (such as DejaVu) may work in some situations, the only Unicode font I'm aware of with a complete set of math symbols is STIX. This class will "fallback" on the Bakoma fonts when a required symbol can not be found in the font. """ use_cmex = True def __init__(self, *args, **kwargs): # This must come first so the backend's owner is set correctly if rcParams['mathtext.fallback_to_cm']: self.cm_fallback = BakomaFonts(*args, **kwargs) else: self.cm_fallback = None TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} for texfont in "cal rm tt it bf sf".split(): prop = rcParams['mathtext.' + texfont] font = findfont(prop) self.fontmap[texfont] = font prop = FontProperties('cmex10') font = findfont(prop) self.fontmap['ex'] = font _slanted_symbols = set(r"\int \oint".split()) def _map_virtual_font(self, fontname, font_class, uniindex): return fontname, uniindex def _get_glyph(self, fontname, font_class, sym, fontsize): found_symbol = False if self.use_cmex: uniindex = latex_to_cmex.get(sym) if uniindex is not None: fontname = 'ex' found_symbol = True if not found_symbol: try: uniindex = get_unicode_index(sym) found_symbol = True except ValueError: uniindex = ord('?') warn("No TeX to unicode mapping for '%s'" % sym.encode('ascii', 'backslashreplace'), MathTextWarning) fontname, uniindex = self._map_virtual_font( fontname, font_class, uniindex) # Only characters in the "Letter" class should be italicized in 'it' # mode. Greek capital letters should be Roman. if found_symbol: new_fontname = fontname if fontname == 'it': if uniindex < 0x10000: unistring = unichr(uniindex) if (not unicodedata.category(unistring)[0] == "L" or unicodedata.name(unistring).startswith("GREEK CAPITAL")): new_fontname = 'rm' slanted = (new_fontname == 'it') or sym in self._slanted_symbols found_symbol = False try: cached_font = self._get_font(new_fontname) except RuntimeError: pass else: try: glyphindex = cached_font.charmap[uniindex] found_symbol = True except KeyError: pass if not found_symbol: if self.cm_fallback: warn("Substituting with a symbol from Computer Modern.", MathTextWarning) return self.cm_fallback._get_glyph( fontname, 'it', sym, fontsize) else: if fontname in ('it', 'regular') and isinstance(self, StixFonts): return self._get_glyph('rm', font_class, sym, fontsize) warn("Font '%s' does not have a glyph for '%s'" % (fontname, sym.encode('ascii', 'backslashreplace')), MathTextWarning) warn("Substituting with a dummy symbol.", MathTextWarning) fontname = 'rm' new_fontname = fontname cached_font = self._get_font(fontname) uniindex = 0xA4 # currency character, for lack of anything better glyphindex = cached_font.charmap[uniindex] slanted = False symbol_name = cached_font.font.get_glyph_name(glyphindex) return cached_font, uniindex, symbol_name, fontsize, slanted def get_sized_alternatives_for_symbol(self, fontname, sym): if self.cm_fallback: return self.cm_fallback.get_sized_alternatives_for_symbol( fontname, sym) return [(fontname, sym)] class StixFonts(UnicodeFonts): """ A font handling class for the STIX fonts. In addition to what UnicodeFonts provides, this class: - supports "virtual fonts" which are complete alpha numeric character sets with different font styles at special Unicode code points, such as "Blackboard". - handles sized alternative characters for the STIXSizeX fonts. """ _fontmap = { 'rm' : 'STIXGeneral', 'it' : 'STIXGeneral:italic', 'bf' : 'STIXGeneral:weight=bold', 'nonunirm' : 'STIXNonUnicode', 'nonuniit' : 'STIXNonUnicode:italic', 'nonunibf' : 'STIXNonUnicode:weight=bold', 0 : 'STIXGeneral', 1 : 'STIXSize1', 2 : 'STIXSize2', 3 : 'STIXSize3', 4 : 'STIXSize4', 5 : 'STIXSize5' } use_cmex = False cm_fallback = False _sans = False def __init__(self, *args, **kwargs): TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} for key, name in self._fontmap.iteritems(): fullpath = findfont(name) self.fontmap[key] = fullpath self.fontmap[name] = fullpath def _map_virtual_font(self, fontname, font_class, uniindex): # Handle these "fonts" that are actually embedded in # other fonts. mapping = stix_virtual_fonts.get(fontname) if (self._sans and mapping is None and fontname not in ('regular', 'default')): mapping = stix_virtual_fonts['sf'] doing_sans_conversion = True else: doing_sans_conversion = False if mapping is not None: if isinstance(mapping, dict): mapping = mapping.get(font_class, 'rm') # Binary search for the source glyph lo = 0 hi = len(mapping) while lo < hi: mid = (lo+hi)//2 range = mapping[mid] if uniindex < range[0]: hi = mid elif uniindex <= range[1]: break else: lo = mid + 1 if uniindex >= range[0] and uniindex <= range[1]: uniindex = uniindex - range[0] + range[3] fontname = range[2] elif not doing_sans_conversion: # This will generate a dummy character uniindex = 0x1 fontname = rcParams['mathtext.default'] # Handle private use area glyphs if (fontname in ('it', 'rm', 'bf') and uniindex >= 0xe000 and uniindex <= 0xf8ff): fontname = 'nonuni' + fontname return fontname, uniindex _size_alternatives = {} def get_sized_alternatives_for_symbol(self, fontname, sym): alternatives = self._size_alternatives.get(sym) if alternatives: return alternatives alternatives = [] try: uniindex = get_unicode_index(sym) except ValueError: return [(fontname, sym)] fix_ups = { ord('<'): 0x27e8, ord('>'): 0x27e9 } uniindex = fix_ups.get(uniindex, uniindex) for i in range(6): cached_font = self._get_font(i) glyphindex = cached_font.charmap.get(uniindex) if glyphindex is not None: alternatives.append((i, unichr(uniindex))) self._size_alternatives[sym] = alternatives return alternatives class StixSansFonts(StixFonts): """ A font handling class for the STIX fonts (that uses sans-serif characters by default). """ _sans = True class StandardPsFonts(Fonts): """ Use the standard postscript fonts for rendering to backend_ps Unlike the other font classes, BakomaFont and UnicodeFont, this one requires the Ps backend. """ basepath = os.path.join( get_data_path(), 'fonts', 'afm' ) fontmap = { 'cal' : 'pzcmi8a', # Zapf Chancery 'rm' : 'pncr8a', # New Century Schoolbook 'tt' : 'pcrr8a', # Courier 'it' : 'pncri8a', # New Century Schoolbook Italic 'sf' : 'phvr8a', # Helvetica 'bf' : 'pncb8a', # New Century Schoolbook Bold None : 'psyr' # Symbol } def __init__(self, default_font_prop): Fonts.__init__(self, default_font_prop, MathtextBackendPs()) self.glyphd = {} self.fonts = {} filename = findfont(default_font_prop, fontext='afm') default_font = AFM(file(filename, 'r')) default_font.fname = filename self.fonts['default'] = default_font self.fonts['regular'] = default_font self.pswriter = StringIO() def _get_font(self, font): if font in self.fontmap: basename = self.fontmap[font] else: basename = font cached_font = self.fonts.get(basename) if cached_font is None: fname = os.path.join(self.basepath, basename + ".afm") cached_font = AFM(file(fname, 'r')) cached_font.fname = fname self.fonts[basename] = cached_font self.fonts[cached_font.get_fontname()] = cached_font return cached_font def _get_info (self, fontname, font_class, sym, fontsize, dpi): 'load the cmfont, metrics and glyph with caching' key = fontname, sym, fontsize, dpi tup = self.glyphd.get(key) if tup is not None: return tup # Only characters in the "Letter" class should really be italicized. # This class includes greek letters, so we're ok if (fontname == 'it' and (len(sym) > 1 or not unicodedata.category(unicode(sym)).startswith("L"))): fontname = 'rm' found_symbol = False if sym in latex_to_standard: fontname, num = latex_to_standard[sym] glyph = chr(num) found_symbol = True elif len(sym) == 1: glyph = sym num = ord(glyph) found_symbol = True else: warn("No TeX to built-in Postscript mapping for '%s'" % sym, MathTextWarning) slanted = (fontname == 'it') font = self._get_font(fontname) if found_symbol: try: symbol_name = font.get_name_char(glyph) except KeyError: warn("No glyph in standard Postscript font '%s' for '%s'" % (font.postscript_name, sym), MathTextWarning) found_symbol = False if not found_symbol: glyph = sym = '?' num = ord(glyph) symbol_name = font.get_name_char(glyph) offset = 0 scale = 0.001 * fontsize xmin, ymin, xmax, ymax = [val * scale for val in font.get_bbox_char(glyph)] metrics = Bunch( advance = font.get_width_char(glyph) * scale, width = font.get_width_char(glyph) * scale, height = font.get_height_char(glyph) * scale, xmin = xmin, xmax = xmax, ymin = ymin+offset, ymax = ymax+offset, # iceberg is the equivalent of TeX's "height" iceberg = ymax + offset, slanted = slanted ) self.glyphd[key] = Bunch( font = font, fontsize = fontsize, postscript_name = font.get_fontname(), metrics = metrics, symbol_name = symbol_name, num = num, glyph = glyph, offset = offset ) return self.glyphd[key] def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): if font1 == font2 and fontsize1 == fontsize2: info1 = self._get_info(font1, fontclass1, sym1, fontsize1, dpi) info2 = self._get_info(font2, fontclass2, sym2, fontsize2, dpi) font = info1.font return (font.get_kern_dist(info1.glyph, info2.glyph) * 0.001 * fontsize1) return Fonts.get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi) def get_xheight(self, font, fontsize, dpi): cached_font = self._get_font(font) return cached_font.get_xheight() * 0.001 * fontsize def get_underline_thickness(self, font, fontsize, dpi): cached_font = self._get_font(font) return cached_font.get_underline_thickness() * 0.001 * fontsize ############################################################################## # TeX-LIKE BOX MODEL # The following is based directly on the document 'woven' from the # TeX82 source code. This information is also available in printed # form: # # Knuth, Donald E.. 1986. Computers and Typesetting, Volume B: # TeX: The Program. Addison-Wesley Professional. # # The most relevant "chapters" are: # Data structures for boxes and their friends # Shipping pages out (Ship class) # Packaging (hpack and vpack) # Data structures for math mode # Subroutines for math mode # Typesetting math formulas # # Many of the docstrings below refer to a numbered "node" in that # book, e.g. node123 # # Note that (as TeX) y increases downward, unlike many other parts of # matplotlib. # How much text shrinks when going to the next-smallest level. GROW_FACTOR # must be the inverse of SHRINK_FACTOR. SHRINK_FACTOR = 0.7 GROW_FACTOR = 1.0 / SHRINK_FACTOR # The number of different sizes of chars to use, beyond which they will not # get any smaller NUM_SIZE_LEVELS = 4 # Percentage of x-height of additional horiz. space after sub/superscripts SCRIPT_SPACE = 0.2 # Percentage of x-height that sub/superscripts drop below the baseline SUBDROP = 0.3 # Percentage of x-height that superscripts drop below the baseline SUP1 = 0.5 # Percentage of x-height that subscripts drop below the baseline SUB1 = 0.0 # Percentage of x-height that superscripts are offset relative to the subscript DELTA = 0.18 class MathTextWarning(Warning): pass class Node(object): """ A node in the TeX box model """ def __init__(self): self.size = 0 def __repr__(self): return self.__internal_repr__() def __internal_repr__(self): return self.__class__.__name__ def get_kerning(self, next): return 0.0 def shrink(self): """ Shrinks one level smaller. There are only three levels of sizes, after which things will no longer get smaller. """ self.size += 1 def grow(self): """ Grows one level larger. There is no limit to how big something can get. """ self.size -= 1 def render(self, x, y): pass class Box(Node): """ Represents any node with a physical location. """ def __init__(self, width, height, depth): Node.__init__(self) self.width = width self.height = height self.depth = depth def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.width *= SHRINK_FACTOR self.height *= SHRINK_FACTOR self.depth *= SHRINK_FACTOR def grow(self): Node.grow(self) self.width *= GROW_FACTOR self.height *= GROW_FACTOR self.depth *= GROW_FACTOR def render(self, x1, y1, x2, y2): pass class Vbox(Box): """ A box with only height (zero width). """ def __init__(self, height, depth): Box.__init__(self, 0., height, depth) class Hbox(Box): """ A box with only width (zero height and depth). """ def __init__(self, width): Box.__init__(self, width, 0., 0.) class Char(Node): """ Represents a single character. Unlike TeX, the font information and metrics are stored with each :class:`Char` to make it easier to lookup the font metrics when needed. Note that TeX boxes have a width, height, and depth, unlike Type1 and Truetype which use a full bounding box and an advance in the x-direction. The metrics must be converted to the TeX way, and the advance (if different from width) must be converted into a :class:`Kern` node when the :class:`Char` is added to its parent :class:`Hlist`. """ def __init__(self, c, state): Node.__init__(self) self.c = c self.font_output = state.font_output assert isinstance(state.font, (str, unicode, int)) self.font = state.font self.font_class = state.font_class self.fontsize = state.fontsize self.dpi = state.dpi # The real width, height and depth will be set during the # pack phase, after we know the real fontsize self._update_metrics() def __internal_repr__(self): return '`%s`' % self.c def _update_metrics(self): metrics = self._metrics = self.font_output.get_metrics( self.font, self.font_class, self.c, self.fontsize, self.dpi) if self.c == ' ': self.width = metrics.advance else: self.width = metrics.width self.height = metrics.iceberg self.depth = -(metrics.iceberg - metrics.height) def is_slanted(self): return self._metrics.slanted def get_kerning(self, next): """ Return the amount of kerning between this and the given character. Called when characters are strung together into :class:`Hlist` to create :class:`Kern` nodes. """ advance = self._metrics.advance - self.width kern = 0. if isinstance(next, Char): kern = self.font_output.get_kern( self.font, self.font_class, self.c, self.fontsize, next.font, next.font_class, next.c, next.fontsize, self.dpi) return advance + kern def render(self, x, y): """ Render the character to the canvas """ self.font_output.render_glyph( x, y, self.font, self.font_class, self.c, self.fontsize, self.dpi) def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.fontsize *= SHRINK_FACTOR self.width *= SHRINK_FACTOR self.height *= SHRINK_FACTOR self.depth *= SHRINK_FACTOR def grow(self): Node.grow(self) self.fontsize *= GROW_FACTOR self.width *= GROW_FACTOR self.height *= GROW_FACTOR self.depth *= GROW_FACTOR class Accent(Char): """ The font metrics need to be dealt with differently for accents, since they are already offset correctly from the baseline in TrueType fonts. """ def _update_metrics(self): metrics = self._metrics = self.font_output.get_metrics( self.font, self.font_class, self.c, self.fontsize, self.dpi) self.width = metrics.xmax - metrics.xmin self.height = metrics.ymax - metrics.ymin self.depth = 0 def shrink(self): Char.shrink(self) self._update_metrics() def grow(self): Char.grow(self) self._update_metrics() def render(self, x, y): """ Render the character to the canvas. """ self.font_output.render_glyph( x - self._metrics.xmin, y + self._metrics.ymin, self.font, self.font_class, self.c, self.fontsize, self.dpi) class List(Box): """ A list of nodes (either horizontal or vertical). """ def __init__(self, elements): Box.__init__(self, 0., 0., 0.) self.shift_amount = 0. # An arbitrary offset self.children = elements # The child nodes of this list # The following parameters are set in the vpack and hpack functions self.glue_set = 0. # The glue setting of this list self.glue_sign = 0 # 0: normal, -1: shrinking, 1: stretching self.glue_order = 0 # The order of infinity (0 - 3) for the glue def __repr__(self): return '[%s <%.02f %.02f %.02f %.02f> %s]' % ( self.__internal_repr__(), self.width, self.height, self.depth, self.shift_amount, ' '.join([repr(x) for x in self.children])) def _determine_order(self, totals): """ A helper function to determine the highest order of glue used by the members of this list. Used by vpack and hpack. """ o = 0 for i in range(len(totals) - 1, 0, -1): if totals[i] != 0.0: o = i break return o def _set_glue(self, x, sign, totals, error_type): o = self._determine_order(totals) self.glue_order = o self.glue_sign = sign if totals[o] != 0.: self.glue_set = x / totals[o] else: self.glue_sign = 0 self.glue_ratio = 0. if o == 0: if len(self.children): warn("%s %s: %r" % (error_type, self.__class__.__name__, self), MathTextWarning) def shrink(self): for child in self.children: child.shrink() Box.shrink(self) if self.size < NUM_SIZE_LEVELS: self.shift_amount *= SHRINK_FACTOR self.glue_set *= SHRINK_FACTOR def grow(self): for child in self.children: child.grow() Box.grow(self) self.shift_amount *= GROW_FACTOR self.glue_set *= GROW_FACTOR class Hlist(List): """ A horizontal list of boxes. """ def __init__(self, elements, w=0., m='additional', do_kern=True): List.__init__(self, elements) if do_kern: self.kern() self.hpack() def kern(self): """ Insert :class:`Kern` nodes between :class:`Char` nodes to set kerning. The :class:`Char` nodes themselves determine the amount of kerning they need (in :meth:`~Char.get_kerning`), and this function just creates the linked list in the correct way. """ new_children = [] num_children = len(self.children) if num_children: for i in range(num_children): elem = self.children[i] if i < num_children - 1: next = self.children[i + 1] else: next = None new_children.append(elem) kerning_distance = elem.get_kerning(next) if kerning_distance != 0.: kern = Kern(kerning_distance) new_children.append(kern) self.children = new_children # This is a failed experiment to fake cross-font kerning. # def get_kerning(self, next): # if len(self.children) >= 2 and isinstance(self.children[-2], Char): # if isinstance(next, Char): # print "CASE A" # return self.children[-2].get_kerning(next) # elif isinstance(next, Hlist) and len(next.children) and isinstance(next.children[0], Char): # print "CASE B" # result = self.children[-2].get_kerning(next.children[0]) # print result # return result # return 0.0 def hpack(self, w=0., m='additional'): """ The main duty of :meth:`hpack` is to compute the dimensions of the resulting boxes, and to adjust the glue if one of those dimensions is pre-specified. The computed sizes normally enclose all of the material inside the new box; but some items may stick out if negative glue is used, if the box is overfull, or if a ``\\vbox`` includes other boxes that have been shifted left. - *w*: specifies a width - *m*: is either 'exactly' or 'additional'. Thus, ``hpack(w, 'exactly')`` produces a box whose width is exactly *w*, while ``hpack(w, 'additional')`` yields a box whose width is the natural width plus *w*. The default values produce a box with the natural width. """ # I don't know why these get reset in TeX. Shift_amount is pretty # much useless if we do. #self.shift_amount = 0. h = 0. d = 0. x = 0. total_stretch = [0.] * 4 total_shrink = [0.] * 4 for p in self.children: if isinstance(p, Char): x += p.width h = max(h, p.height) d = max(d, p.depth) elif isinstance(p, Box): x += p.width if not isinf(p.height) and not isinf(p.depth): s = getattr(p, 'shift_amount', 0.) h = max(h, p.height - s) d = max(d, p.depth + s) elif isinstance(p, Glue): glue_spec = p.glue_spec x += glue_spec.width total_stretch[glue_spec.stretch_order] += glue_spec.stretch total_shrink[glue_spec.shrink_order] += glue_spec.shrink elif isinstance(p, Kern): x += p.width self.height = h self.depth = d if m == 'additional': w += x self.width = w x = w - x if x == 0.: self.glue_sign = 0 self.glue_order = 0 self.glue_ratio = 0. return if x > 0.: self._set_glue(x, 1, total_stretch, "Overfull") else: self._set_glue(x, -1, total_shrink, "Underfull") class Vlist(List): """ A vertical list of boxes. """ def __init__(self, elements, h=0., m='additional'): List.__init__(self, elements) self.vpack() def vpack(self, h=0., m='additional', l=float(inf)): """ The main duty of :meth:`vpack` is to compute the dimensions of the resulting boxes, and to adjust the glue if one of those dimensions is pre-specified. - *h*: specifies a height - *m*: is either 'exactly' or 'additional'. - *l*: a maximum height Thus, ``vpack(h, 'exactly')`` produces a box whose height is exactly *h*, while ``vpack(h, 'additional')`` yields a box whose height is the natural height plus *h*. The default values produce a box with the natural width. """ # I don't know why these get reset in TeX. Shift_amount is pretty # much useless if we do. # self.shift_amount = 0. w = 0. d = 0. x = 0. total_stretch = [0.] * 4 total_shrink = [0.] * 4 for p in self.children: if isinstance(p, Box): x += d + p.height d = p.depth if not isinf(p.width): s = getattr(p, 'shift_amount', 0.) w = max(w, p.width + s) elif isinstance(p, Glue): x += d d = 0. glue_spec = p.glue_spec x += glue_spec.width total_stretch[glue_spec.stretch_order] += glue_spec.stretch total_shrink[glue_spec.shrink_order] += glue_spec.shrink elif isinstance(p, Kern): x += d + p.width d = 0. elif isinstance(p, Char): raise RuntimeError("Internal mathtext error: Char node found in Vlist.") self.width = w if d > l: x += d - l self.depth = l else: self.depth = d if m == 'additional': h += x self.height = h x = h - x if x == 0: self.glue_sign = 0 self.glue_order = 0 self.glue_ratio = 0. return if x > 0.: self._set_glue(x, 1, total_stretch, "Overfull") else: self._set_glue(x, -1, total_shrink, "Underfull") class Rule(Box): """ A :class:`Rule` node stands for a solid black rectangle; it has *width*, *depth*, and *height* fields just as in an :class:`Hlist`. However, if any of these dimensions is inf, the actual value will be determined by running the rule up to the boundary of the innermost enclosing box. This is called a "running dimension." The width is never running in an :class:`Hlist`; the height and depth are never running in a :class:`Vlist`. """ def __init__(self, width, height, depth, state): Box.__init__(self, width, height, depth) self.font_output = state.font_output def render(self, x, y, w, h): self.font_output.render_rect_filled(x, y, x + w, y + h) class Hrule(Rule): """ Convenience class to create a horizontal rule. """ def __init__(self, state): thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) height = depth = thickness * 0.5 Rule.__init__(self, inf, height, depth, state) class Vrule(Rule): """ Convenience class to create a vertical rule. """ def __init__(self, state): thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) Rule.__init__(self, thickness, inf, inf, state) class Glue(Node): """ Most of the information in this object is stored in the underlying :class:`GlueSpec` class, which is shared between multiple glue objects. (This is a memory optimization which probably doesn't matter anymore, but it's easier to stick to what TeX does.) """ def __init__(self, glue_type, copy=False): Node.__init__(self) self.glue_subtype = 'normal' if is_string_like(glue_type): glue_spec = GlueSpec.factory(glue_type) elif isinstance(glue_type, GlueSpec): glue_spec = glue_type else: raise ArgumentError("glue_type must be a glue spec name or instance.") if copy: glue_spec = glue_spec.copy() self.glue_spec = glue_spec def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: if self.glue_spec.width != 0.: self.glue_spec = self.glue_spec.copy() self.glue_spec.width *= SHRINK_FACTOR def grow(self): Node.grow(self) if self.glue_spec.width != 0.: self.glue_spec = self.glue_spec.copy() self.glue_spec.width *= GROW_FACTOR class GlueSpec(object): """ See :class:`Glue`. """ def __init__(self, width=0., stretch=0., stretch_order=0, shrink=0., shrink_order=0): self.width = width self.stretch = stretch self.stretch_order = stretch_order self.shrink = shrink self.shrink_order = shrink_order def copy(self): return GlueSpec( self.width, self.stretch, self.stretch_order, self.shrink, self.shrink_order) def factory(cls, glue_type): return cls._types[glue_type] factory = classmethod(factory) GlueSpec._types = { 'fil': GlueSpec(0., 1., 1, 0., 0), 'fill': GlueSpec(0., 1., 2, 0., 0), 'filll': GlueSpec(0., 1., 3, 0., 0), 'neg_fil': GlueSpec(0., 0., 0, 1., 1), 'neg_fill': GlueSpec(0., 0., 0, 1., 2), 'neg_filll': GlueSpec(0., 0., 0, 1., 3), 'empty': GlueSpec(0., 0., 0, 0., 0), 'ss': GlueSpec(0., 1., 1, -1., 1) } # Some convenient ways to get common kinds of glue class Fil(Glue): def __init__(self): Glue.__init__(self, 'fil') class Fill(Glue): def __init__(self): Glue.__init__(self, 'fill') class Filll(Glue): def __init__(self): Glue.__init__(self, 'filll') class NegFil(Glue): def __init__(self): Glue.__init__(self, 'neg_fil') class NegFill(Glue): def __init__(self): Glue.__init__(self, 'neg_fill') class NegFilll(Glue): def __init__(self): Glue.__init__(self, 'neg_filll') class SsGlue(Glue): def __init__(self): Glue.__init__(self, 'ss') class HCentered(Hlist): """ A convenience class to create an :class:`Hlist` whose contents are centered within its enclosing box. """ def __init__(self, elements): Hlist.__init__(self, [SsGlue()] + elements + [SsGlue()], do_kern=False) class VCentered(Hlist): """ A convenience class to create a :class:`Vlist` whose contents are centered within its enclosing box. """ def __init__(self, elements): Vlist.__init__(self, [SsGlue()] + elements + [SsGlue()]) class Kern(Node): """ A :class:`Kern` node has a width field to specify a (normally negative) amount of spacing. This spacing correction appears in horizontal lists between letters like A and V when the font designer said that it looks better to move them closer together or further apart. A kern node can also appear in a vertical list, when its *width* denotes additional spacing in the vertical direction. """ def __init__(self, width): Node.__init__(self) self.width = width def __repr__(self): return "k%.02f" % self.width def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.width *= SHRINK_FACTOR def grow(self): Node.grow(self) self.width *= GROW_FACTOR class SubSuperCluster(Hlist): """ :class:`SubSuperCluster` is a sort of hack to get around that fact that this code do a two-pass parse like TeX. This lets us store enough information in the hlist itself, namely the nucleus, sub- and super-script, such that if another script follows that needs to be attached, it can be reconfigured on the fly. """ def __init__(self): self.nucleus = None self.sub = None self.super = None Hlist.__init__(self, []) class AutoHeightChar(Hlist): """ :class:`AutoHeightChar` will create a character as close to the given height and depth as possible. When using a font with multiple height versions of some characters (such as the BaKoMa fonts), the correct glyph will be selected, otherwise this will always just return a scaled version of the glyph. """ def __init__(self, c, height, depth, state, always=False): alternatives = state.font_output.get_sized_alternatives_for_symbol( state.font, c) state = state.copy() target_total = height + depth for fontname, sym in alternatives: state.font = fontname char = Char(sym, state) if char.height + char.depth >= target_total: break factor = target_total / (char.height + char.depth) state.fontsize *= factor char = Char(sym, state) shift = (depth - char.depth) Hlist.__init__(self, [char]) self.shift_amount = shift class AutoWidthChar(Hlist): """ :class:`AutoWidthChar` will create a character as close to the given width as possible. When using a font with multiple width versions of some characters (such as the BaKoMa fonts), the correct glyph will be selected, otherwise this will always just return a scaled version of the glyph. """ def __init__(self, c, width, state, always=False, char_class=Char): alternatives = state.font_output.get_sized_alternatives_for_symbol( state.font, c) state = state.copy() for fontname, sym in alternatives: state.font = fontname char = char_class(sym, state) if char.width >= width: break factor = width / char.width state.fontsize *= factor char = char_class(sym, state) Hlist.__init__(self, [char]) self.width = char.width class Ship(object): """ Once the boxes have been set up, this sends them to output. Since boxes can be inside of boxes inside of boxes, the main work of :class:`Ship` is done by two mutually recursive routines, :meth:`hlist_out` and :meth:`vlist_out`, which traverse the :class:`Hlist` nodes and :class:`Vlist` nodes inside of horizontal and vertical boxes. The global variables used in TeX to store state as it processes have become member variables here. """ def __call__(self, ox, oy, box): self.max_push = 0 # Deepest nesting of push commands so far self.cur_s = 0 self.cur_v = 0. self.cur_h = 0. self.off_h = ox self.off_v = oy + box.height self.hlist_out(box) def clamp(value): if value < -1000000000.: return -1000000000. if value > 1000000000.: return 1000000000. return value clamp = staticmethod(clamp) def hlist_out(self, box): cur_g = 0 cur_glue = 0. glue_order = box.glue_order glue_sign = box.glue_sign base_line = self.cur_v left_edge = self.cur_h self.cur_s += 1 self.max_push = max(self.cur_s, self.max_push) clamp = self.clamp for p in box.children: if isinstance(p, Char): p.render(self.cur_h + self.off_h, self.cur_v + self.off_v) self.cur_h += p.width elif isinstance(p, Kern): self.cur_h += p.width elif isinstance(p, List): # node623 if len(p.children) == 0: self.cur_h += p.width else: edge = self.cur_h self.cur_v = base_line + p.shift_amount if isinstance(p, Hlist): self.hlist_out(p) else: # p.vpack(box.height + box.depth, 'exactly') self.vlist_out(p) self.cur_h = edge + p.width self.cur_v = base_line elif isinstance(p, Box): # node624 rule_height = p.height rule_depth = p.depth rule_width = p.width if isinf(rule_height): rule_height = box.height if isinf(rule_depth): rule_depth = box.depth if rule_height > 0 and rule_width > 0: self.cur_v = baseline + rule_depth p.render(self.cur_h + self.off_h, self.cur_v + self.off_v, rule_width, rule_height) self.cur_v = baseline self.cur_h += rule_width elif isinstance(p, Glue): # node625 glue_spec = p.glue_spec rule_width = glue_spec.width - cur_g if glue_sign != 0: # normal if glue_sign == 1: # stretching if glue_spec.stretch_order == glue_order: cur_glue += glue_spec.stretch cur_g = round(clamp(float(box.glue_set) * cur_glue)) elif glue_spec.shrink_order == glue_order: cur_glue += glue_spec.shrink cur_g = round(clamp(float(box.glue_set) * cur_glue)) rule_width += cur_g self.cur_h += rule_width self.cur_s -= 1 def vlist_out(self, box): cur_g = 0 cur_glue = 0. glue_order = box.glue_order glue_sign = box.glue_sign self.cur_s += 1 self.max_push = max(self.max_push, self.cur_s) left_edge = self.cur_h self.cur_v -= box.height top_edge = self.cur_v clamp = self.clamp for p in box.children: if isinstance(p, Kern): self.cur_v += p.width elif isinstance(p, List): if len(p.children) == 0: self.cur_v += p.height + p.depth else: self.cur_v += p.height self.cur_h = left_edge + p.shift_amount save_v = self.cur_v p.width = box.width if isinstance(p, Hlist): self.hlist_out(p) else: self.vlist_out(p) self.cur_v = save_v + p.depth self.cur_h = left_edge elif isinstance(p, Box): rule_height = p.height rule_depth = p.depth rule_width = p.width if isinf(rule_width): rule_width = box.width rule_height += rule_depth if rule_height > 0 and rule_depth > 0: self.cur_v += rule_height p.render(self.cur_h + self.off_h, self.cur_v + self.off_v, rule_width, rule_height) elif isinstance(p, Glue): glue_spec = p.glue_spec rule_height = glue_spec.width - cur_g if glue_sign != 0: # normal if glue_sign == 1: # stretching if glue_spec.stretch_order == glue_order: cur_glue += glue_spec.stretch cur_g = round(clamp(float(box.glue_set) * cur_glue)) elif glue_spec.shrink_order == glue_order: # shrinking cur_glue += glue_spec.shrink cur_g = round(clamp(float(box.glue_set) * cur_glue)) rule_height += cur_g self.cur_v += rule_height elif isinstance(p, Char): raise RuntimeError("Internal mathtext error: Char node found in vlist") self.cur_s -= 1 ship = Ship() ############################################################################## # PARSER def Error(msg): """ Helper class to raise parser errors. """ def raise_error(s, loc, toks): raise ParseFatalException(msg + "\n" + s) empty = Empty() empty.setParseAction(raise_error) return empty class Parser(object): """ This is the pyparsing-based parser for math expressions. It actually parses full strings *containing* math expressions, in that raw text may also appear outside of pairs of ``$``. The grammar is based directly on that in TeX, though it cuts a few corners. """ _binary_operators = set(r''' + * \pm \sqcap \rhd \mp \sqcup \unlhd \times \vee \unrhd \div \wedge \oplus \ast \setminus \ominus \star \wr \otimes \circ \diamond \oslash \bullet \bigtriangleup \odot \cdot \bigtriangledown \bigcirc \cap \triangleleft \dagger \cup \triangleright \ddagger \uplus \lhd \amalg'''.split()) _relation_symbols = set(r''' = < > : \leq \geq \equiv \models \prec \succ \sim \perp \preceq \succeq \simeq \mid \ll \gg \asymp \parallel \subset \supset \approx \bowtie \subseteq \supseteq \cong \Join \sqsubset \sqsupset \neq \smile \sqsubseteq \sqsupseteq \doteq \frown \in \ni \propto \vdash \dashv \dots'''.split()) _arrow_symbols = set(r''' \leftarrow \longleftarrow \uparrow \Leftarrow \Longleftarrow \Uparrow \rightarrow \longrightarrow \downarrow \Rightarrow \Longrightarrow \Downarrow \leftrightarrow \longleftrightarrow \updownarrow \Leftrightarrow \Longleftrightarrow \Updownarrow \mapsto \longmapsto \nearrow \hookleftarrow \hookrightarrow \searrow \leftharpoonup \rightharpoonup \swarrow \leftharpoondown \rightharpoondown \nwarrow \rightleftharpoons \leadsto'''.split()) _spaced_symbols = _binary_operators | _relation_symbols | _arrow_symbols _punctuation_symbols = set(r', ; . ! \ldotp \cdotp'.split()) _overunder_symbols = set(r''' \sum \prod \coprod \bigcap \bigcup \bigsqcup \bigvee \bigwedge \bigodot \bigotimes \bigoplus \biguplus '''.split()) _overunder_functions = set( r"lim liminf limsup sup max min".split()) _dropsub_symbols = set(r'''\int \oint'''.split()) _fontnames = set("rm cal it tt sf bf default bb frak circled scr regular".split()) _function_names = set(""" arccos csc ker min arcsin deg lg Pr arctan det lim sec arg dim liminf sin cos exp limsup sinh cosh gcd ln sup cot hom log tan coth inf max tanh""".split()) _ambiDelim = set(r""" | \| / \backslash \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow .""".split()) _leftDelim = set(r"( [ { < \lfloor \langle \lceil".split()) _rightDelim = set(r") ] } > \rfloor \rangle \rceil".split()) def __init__(self): # All forward declarations are here font = Forward().setParseAction(self.font).setName("font") latexfont = Forward() subsuper = Forward().setParseAction(self.subsuperscript).setName("subsuper") placeable = Forward().setName("placeable") simple = Forward().setName("simple") autoDelim = Forward().setParseAction(self.auto_sized_delimiter) self._expression = Forward().setParseAction(self.finish).setName("finish") float = Regex(r"[-+]?([0-9]+\.?[0-9]*|\.[0-9]+)") lbrace = Literal('{').suppress() rbrace = Literal('}').suppress() start_group = (Optional(latexfont) - lbrace) start_group.setParseAction(self.start_group) end_group = rbrace.copy() end_group.setParseAction(self.end_group) bslash = Literal('\\') accent = oneOf(self._accent_map.keys() + list(self._wide_accents)) function = oneOf(list(self._function_names)) fontname = oneOf(list(self._fontnames)) latex2efont = oneOf(['math' + x for x in self._fontnames]) space =(FollowedBy(bslash) + oneOf([r'\ ', r'\/', r'\,', r'\;', r'\quad', r'\qquad', r'\!']) ).setParseAction(self.space).setName('space') customspace =(Literal(r'\hspace') - (( lbrace - float - rbrace ) | Error(r"Expected \hspace{n}")) ).setParseAction(self.customspace).setName('customspace') unicode_range = u"\U00000080-\U0001ffff" symbol =(Regex(UR"([a-zA-Z0-9 +\-*/<>=:,.;!'@()\[\]|%s])|(\\[%%${}\[\]_|])" % unicode_range) | (Combine( bslash + oneOf(tex2uni.keys()) ) + FollowedBy(Regex("[^a-zA-Z]"))) ).setParseAction(self.symbol).leaveWhitespace() c_over_c =(Suppress(bslash) + oneOf(self._char_over_chars.keys()) ).setParseAction(self.char_over_chars) accent = Group( Suppress(bslash) + accent - placeable ).setParseAction(self.accent).setName("accent") function =(Suppress(bslash) + function ).setParseAction(self.function).setName("function") group = Group( start_group + ZeroOrMore( autoDelim ^ simple) - end_group ).setParseAction(self.group).setName("group") font <<(Suppress(bslash) + fontname) latexfont <<(Suppress(bslash) + latex2efont) frac = Group( Suppress(Literal(r"\frac")) + ((group + group) | Error(r"Expected \frac{num}{den}")) ).setParseAction(self.frac).setName("frac") sqrt = Group( Suppress(Literal(r"\sqrt")) + Optional( Suppress(Literal("[")) - Regex("[0-9]+") - Suppress(Literal("]")), default = None ) + (group | Error("Expected \sqrt{value}")) ).setParseAction(self.sqrt).setName("sqrt") placeable <<(function ^ (c_over_c | symbol) ^ accent ^ group ^ frac ^ sqrt ) simple <<(space | customspace | font | subsuper ) subsuperop = oneOf(["_", "^"]) subsuper << Group( ( Optional(placeable) + OneOrMore( subsuperop - placeable ) ) | placeable ) ambiDelim = oneOf(list(self._ambiDelim)) leftDelim = oneOf(list(self._leftDelim)) rightDelim = oneOf(list(self._rightDelim)) autoDelim <<(Suppress(Literal(r"\left")) + ((leftDelim | ambiDelim) | Error("Expected a delimiter")) + Group( autoDelim ^ OneOrMore(simple)) + Suppress(Literal(r"\right")) + ((rightDelim | ambiDelim) | Error("Expected a delimiter")) ) math = OneOrMore( autoDelim ^ simple ).setParseAction(self.math).setName("math") math_delim = ~bslash + Literal('$') non_math = Regex(r"(?:(?:\\[$])|[^$])*" ).setParseAction(self.non_math).setName("non_math").leaveWhitespace() self._expression << ( non_math + ZeroOrMore( Suppress(math_delim) + Optional(math) + (Suppress(math_delim) | Error("Expected end of math '$'")) + non_math ) ) + StringEnd() self.clear() def clear(self): """ Clear any state before parsing. """ self._expr = None self._state_stack = None self._em_width_cache = {} def parse(self, s, fonts_object, fontsize, dpi): """ Parse expression *s* using the given *fonts_object* for output, at the given *fontsize* and *dpi*. Returns the parse tree of :class:`Node` instances. """ self._state_stack = [self.State(fonts_object, 'default', 'rm', fontsize, dpi)] try: self._expression.parseString(s) except ParseException, err: raise ValueError("\n".join([ "", err.line, " " * (err.column - 1) + "^", str(err)])) return self._expr # The state of the parser is maintained in a stack. Upon # entering and leaving a group { } or math/non-math, the stack # is pushed and popped accordingly. The current state always # exists in the top element of the stack. class State(object): """ Stores the state of the parser. States are pushed and popped from a stack as necessary, and the "current" state is always at the top of the stack. """ def __init__(self, font_output, font, font_class, fontsize, dpi): self.font_output = font_output self._font = font self.font_class = font_class self.fontsize = fontsize self.dpi = dpi def copy(self): return Parser.State( self.font_output, self.font, self.font_class, self.fontsize, self.dpi) def _get_font(self): return self._font def _set_font(self, name): if name in ('rm', 'it', 'bf'): self.font_class = name self._font = name font = property(_get_font, _set_font) def get_state(self): """ Get the current :class:`State` of the parser. """ return self._state_stack[-1] def pop_state(self): """ Pop a :class:`State` off of the stack. """ self._state_stack.pop() def push_state(self): """ Push a new :class:`State` onto the stack which is just a copy of the current state. """ self._state_stack.append(self.get_state().copy()) def finish(self, s, loc, toks): #~ print "finish", toks self._expr = Hlist(toks) return [self._expr] def math(self, s, loc, toks): #~ print "math", toks hlist = Hlist(toks) self.pop_state() return [hlist] def non_math(self, s, loc, toks): #~ print "non_math", toks s = toks[0].replace(r'\$', '$') symbols = [Char(c, self.get_state()) for c in s] hlist = Hlist(symbols) # We're going into math now, so set font to 'it' self.push_state() self.get_state().font = rcParams['mathtext.default'] return [hlist] def _make_space(self, percentage): # All spaces are relative to em width state = self.get_state() key = (state.font, state.fontsize, state.dpi) width = self._em_width_cache.get(key) if width is None: metrics = state.font_output.get_metrics( state.font, rcParams['mathtext.default'], 'm', state.fontsize, state.dpi) width = metrics.advance self._em_width_cache[key] = width return Kern(width * percentage) _space_widths = { r'\ ' : 0.3, r'\,' : 0.4, r'\;' : 0.8, r'\quad' : 1.6, r'\qquad' : 3.2, r'\!' : -0.4, r'\/' : 0.4 } def space(self, s, loc, toks): assert(len(toks)==1) num = self._space_widths[toks[0]] box = self._make_space(num) return [box] def customspace(self, s, loc, toks): return [self._make_space(float(toks[1]))] def symbol(self, s, loc, toks): # print "symbol", toks c = toks[0] try: char = Char(c, self.get_state()) except ValueError: raise ParseFatalException("Unknown symbol: %s" % c) if c in self._spaced_symbols: return [Hlist( [self._make_space(0.2), char, self._make_space(0.2)] , do_kern = False)] elif c in self._punctuation_symbols: return [Hlist( [char, self._make_space(0.2)] , do_kern = False)] return [char] _char_over_chars = { # The first 2 entires in the tuple are (font, char, sizescale) for # the two symbols under and over. The third element is the space # (in multiples of underline height) r'AA' : ( ('rm', 'A', 1.0), (None, '\circ', 0.5), 0.0), } def char_over_chars(self, s, loc, toks): sym = toks[0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) under_desc, over_desc, space = \ self._char_over_chars.get(sym, (None, None, 0.0)) if under_desc is None: raise ParseFatalException("Error parsing symbol") over_state = state.copy() if over_desc[0] is not None: over_state.font = over_desc[0] over_state.fontsize *= over_desc[2] over = Accent(over_desc[1], over_state) under_state = state.copy() if under_desc[0] is not None: under_state.font = under_desc[0] under_state.fontsize *= under_desc[2] under = Char(under_desc[1], under_state) width = max(over.width, under.width) over_centered = HCentered([over]) over_centered.hpack(width, 'exactly') under_centered = HCentered([under]) under_centered.hpack(width, 'exactly') return Vlist([ over_centered, Vbox(0., thickness * space), under_centered ]) _accent_map = { r'hat' : r'\circumflexaccent', r'breve' : r'\combiningbreve', r'bar' : r'\combiningoverline', r'grave' : r'\combininggraveaccent', r'acute' : r'\combiningacuteaccent', r'ddot' : r'\combiningdiaeresis', r'tilde' : r'\combiningtilde', r'dot' : r'\combiningdotabove', r'vec' : r'\combiningrightarrowabove', r'"' : r'\combiningdiaeresis', r"`" : r'\combininggraveaccent', r"'" : r'\combiningacuteaccent', r'~' : r'\combiningtilde', r'.' : r'\combiningdotabove', r'^' : r'\circumflexaccent', r'overrightarrow' : r'\rightarrow', r'overleftarrow' : r'\leftarrow' } _wide_accents = set(r"widehat widetilde".split()) def accent(self, s, loc, toks): assert(len(toks)==1) state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) if len(toks[0]) != 2: raise ParseFatalException("Error parsing accent") accent, sym = toks[0] if accent in self._wide_accents: accent = AutoWidthChar( '\\' + accent, sym.width, state, char_class=Accent) else: accent = Accent(self._accent_map[accent], state) centered = HCentered([accent]) centered.hpack(sym.width, 'exactly') return Vlist([ centered, Vbox(0., thickness * 2.0), Hlist([sym]) ]) def function(self, s, loc, toks): #~ print "function", toks self.push_state() state = self.get_state() state.font = 'rm' hlist = Hlist([Char(c, state) for c in toks[0]]) self.pop_state() hlist.function_name = toks[0] return hlist def start_group(self, s, loc, toks): self.push_state() # Deal with LaTeX-style font tokens if len(toks): self.get_state().font = toks[0][4:] return [] def group(self, s, loc, toks): grp = Hlist(toks[0]) return [grp] def end_group(self, s, loc, toks): self.pop_state() return [] def font(self, s, loc, toks): assert(len(toks)==1) name = toks[0] self.get_state().font = name return [] def is_overunder(self, nucleus): if isinstance(nucleus, Char): return nucleus.c in self._overunder_symbols elif isinstance(nucleus, Hlist) and hasattr(nucleus, 'function_name'): return nucleus.function_name in self._overunder_functions return False def is_dropsub(self, nucleus): if isinstance(nucleus, Char): return nucleus.c in self._dropsub_symbols return False def is_slanted(self, nucleus): if isinstance(nucleus, Char): return nucleus.is_slanted() return False def subsuperscript(self, s, loc, toks): assert(len(toks)==1) # print 'subsuperscript', toks nucleus = None sub = None super = None if len(toks[0]) == 1: return toks[0].asList() elif len(toks[0]) == 2: op, next = toks[0] nucleus = Hbox(0.0) if op == '_': sub = next else: super = next elif len(toks[0]) == 3: nucleus, op, next = toks[0] if op == '_': sub = next else: super = next elif len(toks[0]) == 5: nucleus, op1, next1, op2, next2 = toks[0] if op1 == op2: if op1 == '_': raise ParseFatalException("Double subscript") else: raise ParseFatalException("Double superscript") if op1 == '_': sub = next1 super = next2 else: super = next1 sub = next2 else: raise ParseFatalException( "Subscript/superscript sequence is too long. " "Use braces { } to remove ambiguity.") state = self.get_state() rule_thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) xHeight = state.font_output.get_xheight( state.font, state.fontsize, state.dpi) # Handle over/under symbols, such as sum or integral if self.is_overunder(nucleus): vlist = [] shift = 0. width = nucleus.width if super is not None: super.shrink() width = max(width, super.width) if sub is not None: sub.shrink() width = max(width, sub.width) if super is not None: hlist = HCentered([super]) hlist.hpack(width, 'exactly') vlist.extend([hlist, Kern(rule_thickness * 3.0)]) hlist = HCentered([nucleus]) hlist.hpack(width, 'exactly') vlist.append(hlist) if sub is not None: hlist = HCentered([sub]) hlist.hpack(width, 'exactly') vlist.extend([Kern(rule_thickness * 3.0), hlist]) shift = hlist.height + hlist.depth + rule_thickness * 2.0 vlist = Vlist(vlist) vlist.shift_amount = shift + nucleus.depth * 0.5 result = Hlist([vlist]) return [result] # Handle regular sub/superscripts shift_up = nucleus.height - SUBDROP * xHeight if self.is_dropsub(nucleus): shift_down = nucleus.depth + SUBDROP * xHeight else: shift_down = SUBDROP * xHeight if super is None: # node757 sub.shrink() x = Hlist([sub]) # x.width += SCRIPT_SPACE * xHeight shift_down = max(shift_down, SUB1) clr = x.height - (abs(xHeight * 4.0) / 5.0) shift_down = max(shift_down, clr) x.shift_amount = shift_down else: super.shrink() x = Hlist([super, Kern(SCRIPT_SPACE * xHeight)]) # x.width += SCRIPT_SPACE * xHeight clr = SUP1 * xHeight shift_up = max(shift_up, clr) clr = x.depth + (abs(xHeight) / 4.0) shift_up = max(shift_up, clr) if sub is None: x.shift_amount = -shift_up else: # Both sub and superscript sub.shrink() y = Hlist([sub]) # y.width += SCRIPT_SPACE * xHeight shift_down = max(shift_down, SUB1 * xHeight) clr = (2.0 * rule_thickness - ((shift_up - x.depth) - (y.height - shift_down))) if clr > 0.: shift_up += clr shift_down += clr if self.is_slanted(nucleus): x.shift_amount = DELTA * (shift_up + shift_down) x = Vlist([x, Kern((shift_up - x.depth) - (y.height - shift_down)), y]) x.shift_amount = shift_down result = Hlist([nucleus, x]) return [result] def frac(self, s, loc, toks): assert(len(toks)==1) assert(len(toks[0])==2) state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) num, den = toks[0] num.shrink() den.shrink() cnum = HCentered([num]) cden = HCentered([den]) width = max(num.width, den.width) + thickness * 10. cnum.hpack(width, 'exactly') cden.hpack(width, 'exactly') vlist = Vlist([cnum, # numerator Vbox(0, thickness * 2.0), # space Hrule(state), # rule Vbox(0, thickness * 4.0), # space cden # denominator ]) # Shift so the fraction line sits in the middle of the # equals sign metrics = state.font_output.get_metrics( state.font, rcParams['mathtext.default'], '=', state.fontsize, state.dpi) shift = (cden.height - ((metrics.ymax + metrics.ymin) / 2 - thickness * 3.0)) vlist.shift_amount = shift hlist = Hlist([vlist, Hbox(thickness * 2.)]) return [hlist] def sqrt(self, s, loc, toks): #~ print "sqrt", toks root, body = toks[0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) # Determine the height of the body, and add a little extra to # the height so it doesn't seem cramped height = body.height - body.shift_amount + thickness * 5.0 depth = body.depth + body.shift_amount check = AutoHeightChar(r'\__sqrt__', height, depth, state, always=True) height = check.height - check.shift_amount depth = check.depth + check.shift_amount # Put a little extra space to the left and right of the body padded_body = Hlist([Hbox(thickness * 2.0), body, Hbox(thickness * 2.0)]) rightside = Vlist([Hrule(state), Fill(), padded_body]) # Stretch the glue between the hrule and the body rightside.vpack(height + (state.fontsize * state.dpi) / (100.0 * 12.0), depth, 'exactly') # Add the root and shift it upward so it is above the tick. # The value of 0.6 is a hard-coded hack ;) if root is None: root = Box(check.width * 0.5, 0., 0.) else: root = Hlist([Char(x, state) for x in root]) root.shrink() root.shrink() root_vlist = Vlist([Hlist([root])]) root_vlist.shift_amount = -height * 0.6 hlist = Hlist([root_vlist, # Root # Negative kerning to put root over tick Kern(-check.width * 0.5), check, # Check rightside]) # Body return [hlist] def auto_sized_delimiter(self, s, loc, toks): #~ print "auto_sized_delimiter", toks front, middle, back = toks state = self.get_state() height = max([x.height for x in middle]) depth = max([x.depth for x in middle]) parts = [] # \left. and \right. aren't supposed to produce any symbols if front != '.': parts.append(AutoHeightChar(front, height, depth, state)) parts.extend(middle.asList()) if back != '.': parts.append(AutoHeightChar(back, height, depth, state)) hlist = Hlist(parts) return hlist ### ############################################################################## # MAIN class MathTextParser(object): _parser = None _backend_mapping = { 'bitmap': MathtextBackendBitmap, 'agg' : MathtextBackendAgg, 'ps' : MathtextBackendPs, 'pdf' : MathtextBackendPdf, 'svg' : MathtextBackendSvg, 'cairo' : MathtextBackendCairo, 'macosx': MathtextBackendAgg, } _font_type_mapping = { 'cm' : BakomaFonts, 'stix' : StixFonts, 'stixsans' : StixSansFonts, 'custom' : UnicodeFonts } def __init__(self, output): """ Create a MathTextParser for the given backend *output*. """ self._output = output.lower() self._cache = maxdict(50) def parse(self, s, dpi = 72, prop = None): """ Parse the given math expression *s* at the given *dpi*. If *prop* is provided, it is a :class:`~matplotlib.font_manager.FontProperties` object specifying the "default" font to use in the math expression, used for all non-math text. The results are cached, so multiple calls to :meth:`parse` with the same expression should be fast. """ if prop is None: prop = FontProperties() cacheKey = (s, dpi, hash(prop)) result = self._cache.get(cacheKey) if result is not None: return result if self._output == 'ps' and rcParams['ps.useafm']: font_output = StandardPsFonts(prop) else: backend = self._backend_mapping[self._output]() fontset = rcParams['mathtext.fontset'] fontset_class = self._font_type_mapping.get(fontset.lower()) if fontset_class is not None: font_output = fontset_class(prop, backend) else: raise ValueError( "mathtext.fontset must be either 'cm', 'stix', " "'stixsans', or 'custom'") fontsize = prop.get_size_in_points() # This is a class variable so we don't rebuild the parser # with each request. if self._parser is None: self.__class__._parser = Parser() box = self._parser.parse(s, font_output, fontsize, dpi) font_output.set_canvas_size(box.width, box.height, box.depth) result = font_output.get_results(box) self._cache[cacheKey] = result # Free up the transient data structures self._parser.clear() # Fix cyclical references font_output.destroy() font_output.mathtext_backend.fonts_object = None font_output.mathtext_backend = None return result def to_mask(self, texstr, dpi=120, fontsize=14): """ *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *dpi* The dots-per-inch to render the text *fontsize* The font size in points Returns a tuple (*array*, *depth*) - *array* is an NxM uint8 alpha ubyte mask array of rasterized tex. - depth is the offset of the baseline from the bottom of the image in pixels. """ assert(self._output=="bitmap") prop = FontProperties(size=fontsize) ftimage, depth = self.parse(texstr, dpi=dpi, prop=prop) x = ftimage.as_array() return x, depth def to_rgba(self, texstr, color='black', dpi=120, fontsize=14): """ *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *color* Any matplotlib color argument *dpi* The dots-per-inch to render the text *fontsize* The font size in points Returns a tuple (*array*, *depth*) - *array* is an NxM uint8 alpha ubyte mask array of rasterized tex. - depth is the offset of the baseline from the bottom of the image in pixels. """ x, depth = self.to_mask(texstr, dpi=dpi, fontsize=fontsize) r, g, b = mcolors.colorConverter.to_rgb(color) RGBA = np.zeros((x.shape[0], x.shape[1], 4), dtype=np.uint8) RGBA[:,:,0] = int(255*r) RGBA[:,:,1] = int(255*g) RGBA[:,:,2] = int(255*b) RGBA[:,:,3] = x return RGBA, depth def to_png(self, filename, texstr, color='black', dpi=120, fontsize=14): """ Writes a tex expression to a PNG file. Returns the offset of the baseline from the bottom of the image in pixels. *filename* A writable filename or fileobject *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *color* A valid matplotlib color argument *dpi* The dots-per-inch to render the text *fontsize* The font size in points Returns the offset of the baseline from the bottom of the image in pixels. """ rgba, depth = self.to_rgba(texstr, color=color, dpi=dpi, fontsize=fontsize) numrows, numcols, tmp = rgba.shape _png.write_png(rgba.tostring(), numcols, numrows, filename) return depth def get_depth(self, texstr, dpi=120, fontsize=14): """ Returns the offset of the baseline from the bottom of the image in pixels. *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *dpi* The dots-per-inch to render the text *fontsize* The font size in points """ assert(self._output=="bitmap") prop = FontProperties(size=fontsize) ftimage, depth = self.parse(texstr, dpi=dpi, prop=prop) return depth